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To understand connections between electronic transitions of  dyes having 
related conjugated systems, topological arguments from graph theory are 
often helpful. Using the Chebyshev expansion of the characteristic poly- 
nomials of cyanines, it is shown that the two possible structures of  tribranched 
cyanines, i.e., a strongly out-of-plane orientation of one of the conjugated  
branches or a Y-conjugation of the entire unsaturated system, are both 
consistent with the similarities between visible absorption of these compounds 
and of simple chains. To choose between these two structures, evidence from 
other sources should be added. 
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1. Spectroscopic evidence 

The properties of tribranched cyanines 

[1~1 - - N - - C - - ( C H ) ~ ] 3 C  
I 
R2 

with one or two N + nitrogens in the terminal rings of the dye, are interpreted in 
two different ways, according as the conjugated system extending between the 
three nitrogens is more or less planar, or one of the branches strongly deviates 
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from the plane formed by the other two. In the latter case, conjugation of the ~" 
electrons does not extend to the out-of-plane branch; and therefore the molecule 
can be compared to a cyanine dye substituted in the central position, many 
examples of which are described in the literature. In the former case, the delocaliz- 
ation of the zr electrons within the three branches gives rise to those cross- 
conjugated phenomena [ 1 ] which are called Y-conjugation in compounds related 
to guanidinium ion [2], and the molecule may be assigned to a new family of dyes. 

The trinuclear cyanines with three identical branches described by Reichardt et 
al. are of both types. The [2.2.2] heptamethine cyanine [3] has a visible spectrum 
in solution, the absorption peaks of which were first assigned assuming a Y- 
conjugation within an unsaturated system of C3 symmetry, in agreement with the 
13C NMR data for the three branches [4]. Later, however, X-ray analysis of the 
crystal structure [5] proved that a nitrogen pair N, N § is arranged as in an all-trans 
pentamethine cyanine, whereas the third N § belongs to a part which is non 
coplanar with the preceding chain; this explains an ESCA spectrum with two 
types of nitrogen. On the other hand, the three branches of the [3.3.3] decamethine 
cyanine [6] have a slightly skew structure rather close to a plane, allowing a 
Y-conjugation which gives rise to an ESCA spectrum with three equivalent 
nitrogens. It should be added that the maxima of the visible absorption spectra 
for both trinuclear cyanines are close to those of the corresponding penta- or 
hepta - dinuclear cyanines, irrespective of their geometries and their numbers of 
neutral and positive nitrogens in the chemical formula, namely one N and two 
N § in a [2.2.2] cyanine or two N and one N § in a [3.3.3] cyanine. 

The [2.2.4] nonamethine cyanine 1 synthesized by one of us (J-P F) gives an 
example of a cyanine with three non-identical branches [7]. Whereas this com- 
pound has two [2.2] branches like the [2.2.2] cyanine, it also looks like the [3.3.3] 
one: its visible spectrum consists of two absorption bands, one coinciding with 
the spectrum of a simple pentamethine cyanine, and the other with that of a 
heptamethine cyanine. This fact by itself cannot lead to definite conclusions as 
regards the stereochemistry of the [2.2.4] cyanine, for it can be interpreted in 
two ways: 

(i) any one of the three unsaturated branches strongly deviates from the mean 
plane of the other two; we are therefore justified in reasoning by analogy with 
substituted pentamethine and heptamethine cyanines [7]. 

(ii) an electronic delocalization is still present within the three branches, and we 
have to consider the corresponding Y-system as a whole; but we are led to look 
at it as a polymethine cyanine chain as it has already been done for the [3.3.3] 
cyanine [6]. 

2. Graph-theory predictions for Y-conjugation 

In a first theoretical approach of the cyanine problem, we can neglect the usually 
big end-groups and perform simple HMO calculations for the remaining conju- 

1 Nomenclature  of  [3] 
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gated systems, by using the same Coulomb and resonance parameters for C and 
N atoms, and for CN and CC bonds, in other words, by modelling cyanines 
upon isoelectronic polymethine anions in which a CH2 replaces each NR2 group. 
It is found that the eigenvalue spectra of the tribranched molecules include a 
number of levels which are also found, either exactly or very closely, in the energy 
spectra of the parent chains, in particular as regards their occupied and empty 
low-energy levels. 

The similarities between the (CH2(CH)3)3C or (CH2(CH)4)3C tribranched systems 
and the CH2(CH)7CH2 or CH2(CH)9CH2 chains respectively, and those between 
the less symmetrical [2.2.4] system and the preceding two chains are reflected in 
their energy levels. To Simulate cyanines, the non-bonding level of each of these 
polymethine compounds must be filled up by one or two additional electrons, 
in accordance with the number of N-R2 groups; this yields closed-shell ground 
states characterized by highest occupied molecular orbitals (HOMO) with the 
same energy. The next energy levels giving the lowest unoccupied molecular 
orbitals (LUMO) in tribranched cyanines are equal or close to those of the parent 
linear chains (i.e., -0.493/3 and -0.618/3 for the first two empty orbitals of the 
[2.2.4] system, vs -0.517/3 and -0.618/3 for the LUMO's of the corresponding 
chains). Similarities between tribranched and simple cyanines also appear for 
transition moments 9Y~. The values of ~ obtained for tribranched systems and 
for polymethine chains in mono-cis conformations adapted to the Y-geometries 
of the former agree in magnitude and direction. Taking the mean distance d 
between adjacent atoms as the length unit and regular angles of 120 ~ for the 
molecular geometries, we get 93~1 = 1.69 (long axis) for the first transition and 
~2 = 1.18 (short axis) for the second transition of a [2.2.4] system, as compared 
to 9Yd = 1.82 and ~ = 1.49 respectively for the long and short cis-methine chains 
included in it. 

Similarities of spectra in a series of unsaturated compounds may be understood 
by theory arguments [8], because of the identity between the adjacency matrix 
of the graph depicting the /3 framework and the matrix giving the energies 
e= ce-x/3 of the 7r MO's in the simplest Hfickel approximation [9-11]. The 
graph of the system of M unsaturated atoms between one nitrogen and the two 
others in a branched cyanine has the form of a Y-like tree, where the tertiary 
carbon plays the role of a branching vertex, the total number of vertices being 
M = 3m + 1 with m even for odd symmetrical cyanines and m odd for the even 
ones. 

The characteristic polynomial PM(x) of a molecular tree can be expressed in 
powers of x by general methods based on the Coulson-Sachs graphical formulae 
[ 12] or by special algorithms adapted to this topology [13, 14]. Instead of writing 
PM as an algebraic equation in x, there is an alternative procedure which was 
used within the framework of the Hfickel-London theory of diamagnetism [15] 
and has been put forward by the recent works of Randic et al. [16]. It consists 
in expanding P~ in terms of Chebyshev polynomials Tp(x) (O<-p <-M), which 
are the characteristic polynomials Pp(x) of simple linear graphs. In this way, P~ 
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is split up into contributions corresponding to elementary molecular graphs, i.e., 
unsaturated chains. Such a procedure is straightforward for trees, the decomposi- 
tion of which can be easily achieved by repeated applications of the Heilbronner 
formula [17]. 

Modelling cyanines by polymethine anions of the same topology, we immediately 
observe a great resemblance between the characteristic polynomials of linear and 
tribranched systems, as is shown in Table 1. 

In comparison with a linear graph, the roots of the eigenvalue equation PM (X) = 0 

obtained for an M = 3m + 1 graph having three identical branches of m vertices 
are classified as follows: 

(i) The solutions of the equation T 2 = 0 giving the doubly-degenerate e-levels 
in a point group with a 3-fold rotation axis. The latter coincide with the single 
roots found for the antisymmetrical part Tm of the graph T2m+l spanned by two 
of the branches, choosing the z axis of the appropriate C2v subgroup along the 
direction of the third one. 

(ii) The solutions of the equation ( Tm+l - 2 Tin_l)  -- 0 which are roots in principle 
different from those found for the symmetrical part of the graph T2m+l. There 
is, however, a strong correlation between the eigenvalues of the two symmetrical 
subsystems, because the expression (Tm+l-2Tm-1) can be considered as the 
equation of a pseudo-linear graph resulting from the junction of one branch with 
the symmetrical combination of the two others (hence, a factor 2 in front of 
Tm-1) .  Moreover, we can expect that the eigenfunctions of a Y-tree matrix have 
some relationship with those of the chains, except that the coefficients of the 
former are distributed among the three branches. 

For conjugated systems, an important feature is the existence or not of roots 
xg =0, corresponding to non-bonding molecular orbitals (NBMO). Since odd 
Chebyshev polynomials are odd functions of x, the general formulas given in 

Table 1. Chebyshev decomposition of polymethine graphs related to the [2.2.4] 
nonamethine cyanine 

Formulas Characteristic polynomials 

Linear chain 
( M = 2 m + l )  
Tribranched system 
( M = 3 m + l )  

CH2(CH)TCH2 
CH2(CH)9CH2 
[CH2(CH)3]2 

\ 
C 

/ 
CH2(CH)5 

(for [2.2.4] nonamethine-cyanine a) 

T2m+ ' = Tin(Tin+,- Tin_,) 

P3m+l = T~(T, ,+1-2T, ,_0  

T9= TsT4- T4T3= T4(Ts-T3) 
T , =  TTT4- T6T3 

PI5 = T, , T4- T6 T,, T3 = T4( TT T4 - 2 T6 T3) 

a Nomenclature of [3] 
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Table 1 for tribranched systems have roots xi = 0. They are either doubly-degen- 
erate roots of  e-symmetry coming from T 2 or singly symmetrical roots located 
in both Tm+l and Tin-l,  according as rn is odd or even. To simulate cyanines, 
one electron per NBMO must be added to the neutral polymethine compounds;  
thus we have closed-shell systems, the HOMO' s  of  which exchange their symmetry 
properties together with rn. However, it is easy to see that, in connection with 
the symmetry alternation observed in two successive roots of  a Chebyshev 
polynomial,  the LUMO's  given by the smallest positive values of  xi change in 
the opposite direction. Consequently, the parity of  m makes no difference as far 
as ( H O M O - L U M O )  transitions are concerned. 

Similar considerations can be developed for less symmetrical Y-trees, except that 
we have to consider parent chains of  different size. In this way, it is possible to 
compare the characteristic polynomial  P15 of the [2.2.4] system with those of the 
chains 29 and Tll formed by the two short branches and by the long and one of 
the short branches respectively. I f  we disregard the exact molecular geometry of 
each compound,  we can classify the roots of  P15, T9 and TI~ in terms of C2~ 
representations (while noticing that the z axis of  the group coincides with the 
longer branch of the tree for the [2.2.4] system and the 9-center system included 
in it, but not for the 11-center one). Within this symmetry group, P~5 and T9 are 
split in the same way, giving T4 as antisymmetrical parts in both cases and rather 
different symmetrical parts. In fact, the roots of  the symmetrical equation ( T7 T4-  
2T6T3) = 0 are found to be strongly correlated with those of  the Tal polynomial,  
using the Heilbronner composition formula adequately. This indicates that the 
eigenvalue spectrum of a fully conjugated [2.2.4] compound proceeds partly from 
the long chain, partly from the short chain included in the tree. Taking into 
account the numerical values of  the smallest positive roots of  Chebyshev poly- 
nomials and using group-theory arguments for transition moments,  it is easy to 
predict a relationship with the heptamethine-cyanine for the first transition of 
the [2.2.4] nonamethine cyanine, and a relationship with the pentamethine cyanine 
for the second one. 

So, a ~r-electron delocalization within the three branches of  a polymethine system 
is consistent with the resemblance observed between the visible absorption spectra 
of  tribranched cyanines and corresponding simple cyanines. Clearly, further 
evidence should be gathered to solve the above-mentioned dilemma. 

References 

1. See Pullman B, Pullman A (1952) In: Les th6ories 61ectroniques de la chimie organique, chap 
VI and VII. Masson, Paris 

2. Gund P (1972) J Chem Educ 49:100 
3. Reichardt C, Mormann W (1972) Chem Bet 105 : 1815; (for nomenclature, see this paper, p 1832) 
4. Grahn W, Reichardt C (1976) Tetrahedron 32:125; Grahn W (1976) Tetrahedron 32:1931 
5. Allmann R, Grahn W, Knecht J, Kucharczyk D, Reichardt C (1985) Chem Ber 118:1295 
6. Reichardt C, Knecht J, Mrozek W, Plaas D, Allmann R, Kucharczyk D (1983) Chem Ber 116 : 1982 
7. Niaz Khan M, Fleury JP, Baumlin P, Hubschwerlein C (1985) Tetrahedron 41:5341 
8. See Graovac A, Gutman I, Trinajstie N (1977) In: Topological approach to the chemistry of 

conjugated molecules. Lect Notes Chem 4. Springer, Berlin Heidelberg New York 



304 L. Grajcar et al. 

9. Giinthard HH, Primas H (1956) Helv Chim Acta 39 : 1645 
10. Ruedenberg K (1954) J Chem Phys 22:1878 
11. Polansky OE, (1975) MATCH 1 : 183 
12. See Trinajstic N (1977) In: Segal GA (ed) Modern theoretical chemistry--Semi-empirical method. 

Plenum Press, New York 
13. Balasubramian K, Randic M (1982) Theor Chim Acta 61:307 
14. Balasubramian K (1982) Int J Quantum Chem 21:581; (1984) Theor Chim Acta65:49 
15. Mayot M, Berthier G, Pullman B (1951) J Phys Radium 12:652, 717; (1953) J Chim Phys 50:170, 

176 
16. Hosoya H, Randic M (1983) Theor Chim Acta 63:473; 

Randic M, Baker B, Kleiner AF (1985) Int J Quantum Chem Symp 19:107 
17. Heilbronner E (1953) Helv Chim Acta 36:170 


